A meshless local boundary integral equation (LBIE) method for solving nonlinear problems
نویسنده
چکیده
A new meshless method for solving nonlinear boundary value problems, based on the local boundary integral equation (LBIE) method and the moving least squares approximation, is proposed in the present paper. The total formulation and a rate formulation are developed for the implementation of the present method. The present method does not need domain and boundary elements to deal with the volume and boundary integrals, which will cause some dif®culties for the conventional boundary element method (BEM) or the ®eld/boundary element method (FBEM), as the volume integrals are inevitable in dealing with nonlinear boundary value problems. This is the same for the element free Galerkin (EFG) method which also needs element-like cells in the entire domain to evaluate volume integrals. The ``companion fundamental solution'' introduced in Zhu, Zhang and Atluri (1998) is used so that no derivatives of the shape functions are needed to construct the stiffness matrix for the interior nodes, as well as for those nodes with no parts of their local boundaries coinciding with the global boundary of the domain of the problem, where essential boundary conditions are speci®ed. It is shown that the satisfaction of the essential as well as natural boundary conditions is quite simple, and algorithmically very ef®cient, in the present nonlinear LBIE approach. Numerical examples are presented for several problems, for which exact solutions are available. The present method converges fast to the ®nal solution with reasonably accurate results for both the unknown variable and its derivatives. No post processing procedure is required to compute the derivatives of the unknown variable (as in the conventional FBEM), since the solution from the present method, using the moving least squares approximation, is already smooth enough. The numerical results in these examples show that high rates of convergence for the Sobolev norms k k0 and k k1 are achievable, and that the values of the unknown variable and its derivatives are quite accurate.
منابع مشابه
A Pure Contour Formulation for the Meshless Local Boundary Integral Equation Method in Thermoelasticity
A new meshless method for solving stationary thermoelastic boundary value problems is proposed in the present paper. The moving least square (MLS) method is used for the approximation of physical quantities in the local boundary integral equations (LBIE). In stationary thermoelasticity, the temperature and displacement fields are uncoupled. In the first step, the temperature field, described by...
متن کاملA New and Simple Meshless LBIE-RBF Numerical Scheme in Linear Elasticity
A new meshless Local Boundary Integral Equation (LBIE) method for solving two-dimensional elastostatic problems is proposed. Randomly distributed points without any connectivity requirement cover the analyzed domain and Local Radial Basis Functions (LRBFs) are employed for the meshless interpolation of displacements. For each point a circular support domain is centered and a local integral repr...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملA local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach
The Galerkin ®nite element method (GFEM) owes its popularity to the local nature of nodal basis functions, i.e., the nodal basis function, when viewed globally, is non-zero only over a patch of elements connecting the node in question to its immediately neighboring nodes. The boundary element method (BEM), on the other hand, reduces the dimensionality of the problem by one, through involving th...
متن کاملLocal weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options
For the first time in mathematical finance field, we propose the local weak form meshless methods for option pricing; especially in this paper we select and analysis two schemes of them named local boundary integral equation method (LBIE) based on moving least squares approximation (MLS) and local radial point interpolation (LRPI) based on Wu’s compactly supported radial basis functions (WCS-RB...
متن کامل